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LUMMARY

Although the application of multigrid methods to the equations of
elasticity and scructurai mechanics has been suggested, few such applications
have been reported in the literature. In the present work, multigrid
techniques are applied to the finite element analysis of the deflections of a
simply supported Bernoulli-Euler beam, and various aspects of the multigrid
algorithm are studied and explained in detail.

In this study, six grid-fineness (or coarseness) levels, with 32 elements
on the finest grid level, were used to model half the beam. To test the
multigrid algorithm more severely, randdm initial approximations were used.
With linear prolongation and sequential ordering, the multigrid algorithm
yielded results which were of machine accuracy with work equivalent to 200
standard Gauss-Seidel iterations on the fine grid. Also with linear
prolongation and sequential ordering, the V(1,n) cycle with n greater than 2
yielded better convergence rates than the V(n,1) cycle.

Derivation of the restriction and prolongation operators was based on
energy principles. Conserving energy during the inter-grid transfers required
that the prolongation operator be the transpose of the restriction operator.
Maintaining an energy balance in the inter-grid transfers also led to improved
convergence rates. With energy-conserving prolongation and sequential
ordering, the multigrid algorithm yielded results of machine accuracy with a
work equivalent to 45 standard Gauss-Seidel iterations on the fine grid. The
red-black ordering of the relaxation with either linear or energy-conserving
prolongation yielded solutions of machine accuracy in a single V(1,1) cycle,

which required work equivalent to about 4 iterations on the finest grid level.



INTRODUCTION

Multigrid methods are known to be efficient solution techniques for
certain classes of partial differential equations, and their advantages in the
field of fluid dynamics have been clearly established [1,2]. Although their
application to the equations of elasticity and structural mechanics has been
suggested, there have been few attempts to implement multigrid methods in
these cases.

Certain basic ideas underlying multigrid methods can be found in the work
of Southwell [3]. However, the work of Fedorenko [4] should be regarded as
the forerunner of the multigrid methods. Fedorenko solved the elliptic
difference equations, using concepts of error smoothing by Jacobi relaxation
and calculation of corrections on coarser grids. He alsc obtained an
asymptotic estimate of the computational complexity for the Poisson equation
on a rectangle. Fedorenko's technique was generalized by Bakhvalov [5] to
include the advection diffusion equation. At about the same time, Wachpress
L6J proposed a two-grid method for elliptic systems. However, multigrid
methods remained virtually unused for almost a decade until the pioneering
work of Brandt L7], Nicolaides [8] and Hackbush [9]) revived them in the mid-
1970's. Specifically, Brandt's early work established the actual efficiency
of multigrid methods, and demonstrated the capability of these methods to
treat nonlinear equations, general domains, local grid refinements, and
solution adaptivity. He demonstrated that the maximum number of computer
operations required to solve a discrete system of n equations in a Poisson
problem was on the order of n computer operations. Brandt also showed how a
local Fourier analysis could be used for the theoretical investigation of

smoothing rates and optimization of procedures. The work of Nicolaides [8] is



the first systematic study of multigrid procedures relating to the finite
element discretization of elliptic equations. A complete historical
background of multigrid methods may be found in Stuben and Trottenburg [10],
and Hackbush [11].

Initially, multigrid methods were successfully applied to elliptic
equations to which they are particularly well suited. Recently, their use has
been extended to parabolic [12] and hyperbolic [2] equations as well.
Developments in multigrid methods since the mid-1970's can be found in
proceedings edited by Hackbush and Trottenburg [13), Paddon and Holstein L14],
and McCormick and Trottenburg [15].

Many problems in elasﬂicity and structural mechanics are governed by
elliptic equations; hence, it is quite surprising that their use in these
fields remains largely unexplored. The present work is an attempt to
introduce these methods to elasticians and computational structural
mechanicists who have had little or no exposure to multigrid techniques. The
focus of the present work is on a simple, one-dimensional example of a
Bernoulli-Euler beam for the following reasons: it is amenable to local
Fourier analysis, yielding smoothing and convergence factors which give an
idea of the efficiency to strive for; it permits the derivation and
description of various multigrid elements without the complications of higher
dimensions; and it serves as a building block for implementing the algorithm
in higher dimensions.

Specifically, this paper describes the finite element discretization of
the relevant beam equations and discusses the performance of the Gauss-Seidel
iterative technique for the sclution of the resulting linear system of
equations. A particular geometric multigrid scheme for accelerating the

convergence (usually called the correction scheme) is presented. A general



procedure for defining the fine-to-coarse transfer of residuals (referred to
as restriction) and coarse-to-fine transfer of corrections {(referred to as
prolongation) is described from a physical view-point. A discussion of
storage and work requirements is also included.

The convergence characteristics of the solution and the number of
floating point operations (work) necessary to achieve convergence are
presented. Results are given for two different orderings of the iterations
and for two different prolongation schemes. The effect of varying the number

of iterations at each grid level is also studied.

NOMENCLATURE
Aj Fourier series coefficients, (j = 1 to N)
bk element length on level k, (k = 1 to M)
B semi-bandwidth of stiffness matrix
EI flexural rigidity
dj value of direct solution at node j, (j =1 to Ne+ 1)
e error in iterative approximation
em accuracy of the machine
e, v ¢y error in w and 8 solutions at node i, (i = 1 to Ne+ 1)
i i
e error normalized by maximum displacement
F force vector
fm mth component of F
h element length on finest level
K structural stiffness matrix
[x)] — ~ element stiffness matrix
kmj entry in mth column, jth row of matrix K
L half-length of beam



"

total number of grid levels
concentrated applied moment
nodal moments

number of degrees of freedom
number of elements

shape functions, (i = 1 to 4)

number of iterations performed on the downward or first

leg of the V-cycle

number of iterations performed on the upward or second

leg of the V-cycle

prolongation matrix

concentrated applied force

maximum value of q{(x)

loading function applied to beam, (0 £ x s L)
restriction matrix

nodal forces

ith component of the residual vector

W and 8 residuals at node j, (j = 1 to Ne+ 1)

L2—norm of the residuals

solution vector

ith component of U

approximation to solution vector U
ith component of V

work done by concentrated moment
work done by nodal forces

work done by concentrated force

displacement

arbitrary constants in displacement function



0 rotation

m strain energy
Superscripts:
f, ¢ fine and coarse grid functions, respectively
S . .
iteration cycle
T

transpose of a matrix or vector

FORMULATION OF THE PROBLEM

One-Dimensional Beam Problem
Consider a simply supported beam of length 2L subjected to the
distributed loading q{x), as shown in Figure 1. Since the problem is
symmetric about the center of the beam, only one half of the beam needs to be

considered. Moment equilibrium requires that

where E1l 1s the flexural rigidity of the beam and qo is the maximum value of
the loading function at the center of the beam.
The boundary conditions for the simply supported beam are w(0) = w(2L) = 0,

The exact solution for the loading shown in Figure 1 is

quL3 - 4 < 2
—)-10(E)+25} 0sxslL (2)

WO = e

To solve the problem using the finite element method, the structure is
idealized by a number of beam elements. For the two-noded beam element, the

displacement w and rotation dw/dx (= 8) are used as the nodal parameters. The



relevant boundary conditions are w(0) = 0 and 6(L) = 0. The element stiffness
matrix LkJ, obtalned from the shape functions given in Appendix A, for a beam

element of length b {s given below.

C 203 602 -12/03 6702 |
(k] = EI 6/b° 4/b -6/b° 2/b (3)
“12/03  -6/b° 12/b3  -6/b°
i 6/ 2/b 6% i ]

The element stiffness matrices are assembled into a structural stiffness
matrix K and, for any given loading and boundary conditions, the system to be
solved can be expressed in matrix form as the following equation:

KU = F (4)
where K is a positive-definite, symmetric, square matrix, F is the load
vector, and U is the vector of unknown nodal displacements and rotations.

Conventional finite element analyses typically use direct solution
techniques, such as Gaussian elimination or Cholesky decomposition, to solve
equation (4). With increasing discretization, solution time can become
critical; thus, an attractive alternative to a direct solution is an efficient
iterative technique.

Iterative Solution Techniques

Two widely used iterative solution techniques are Jacobi iteration and
Gauss-Seidel iteration. The Gauss-Seidel method is used in the present work.
Gauss-Seidel Iteration

Starting with U1 as the initial approximation to the vector of unknowns
U, Gauss-Seidel iteration uses the following algorithm to calculate uZ*I, the

mth component of U:
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where ui and fm are the mth components of U and F, and s indicates the
iteration number. The iteration is continued until the required number of
iterations has been completed or until the change in the current estimate of
the solution vector is less than some given tolerance.
Convergence Study

To study the convergence of the Gauss-Seidel method, the beam problem
shown in Figure 1, with one half the beam modeled with 32 elements, was
considered. The convergence of the Gauss-Seidel iteration was monitored by
calculating the L, -norm of the residuals, denoted as ||r||,. In discrete
form, assuming all elements are of equal length b, the L2-norm can be

expressed as follows:

liril, = (6)
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where the residual ri is defined as follows:

(1 =1 to N) (7)

-
1]
o]
1
I
x

i.U.
;137

In the present finite element context, the residuals in each equation can
be thought of as the unbalanced forces and moments. So that all the residuals
will have the same dimensions, the moment residuals were normalized by b, the

element length. A non-dimensional L2—norm can then be computed as follows:
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b v 2 .2
llrii2 = Li£1l | rwi(x) + [regx)/bj H /(qOL) (8)

where ry and re are the w and & residuals. The L2—norm has also been divided
by the factor qOL (the total load on the beam) to produce a dimensionless
quantity.

To start the Gauss-Seidel iteration, a random initial approximation for U
was chosen. Figure 2 shows the L2—norm plotted versus the number of
iterations for two procedures. 1In the first procedure, the iterations were
performed sequentially from node 1 (at the support) to node 33 (at the center
of the beam). These results are shown by the solid line in Figure 2. 1In the
other procedure, the so-called red-black ordering was used. In this ordering,
all the even-numbered nodes are designated red and all the odd-numbered nodes
are designated black. Iterations are performed on all the red nodes first,
then the black nodes. The results of the red-black ordering are shown by the
dashed line in Figure 2. For both methods, the Lz—norm drops rapidly in the
first 50 iteration cycles; thereafter, the convergence slows, although the
red-black ordering produces slightly better results than the sequential
ordering for large numbers of iterations. However, even after 1600
iterations, the Lz—norm for both is still quite high, indicating that the
iterative solution is still grossly in error. Appendix B further examines the
convergence of this problem.

This behavior is inherent in the Gauss-Seidel method, since Gauss-Seidel
efficiently removes the high frequency errors but not the low frequency
errors. However, the low frequency errors, sihce they are smooth, can be
approximated on coarser levels where they become higher frequency errors. On

coarser levels, these high frequency errors can then be removed more



efficiently. Even if the errors are still smooth on coarser levels,
iterations on the coarser levels require much less work due to the decrease in
the number of unknowns. These ideas are exploited in the multigrid procedure

in a recursive manner to improve the convergence rate.
MULTIGRID PROCEDURES

In this section, thermultigrid method is described. In multigrid
terminology, relaxation is used to mean iterations of some smoothing
technique, such as the Gauss-Seidel described above; thus, to perform
relaxations on a set of equations means to iterate using a smoothing method.
Often, the terms relaxation and iteration are used interchangeably in
multigrid literature. In the remainder of this paper, the term relaxation is
used to mean Gauss-Seidel iteration, and n relaxations means n iterations on
the system of equations.

The multigrid techniques are iterative methods that use a sequence of -
grids and a simple relaxation scheme such as Gauss-Seidel. As previously
stated, such relaxation is very efficient for removing the high frequency
errors on a given grid. The remaining low frequency errors become higher
frequency errors on coarser grids, where they can be effectively smoothed.
The key elements of the multigrid procedure are the relaxation technique and
the coarse grid correction. The multigrid algorithm described here is
generally called a geometric multigrid method.

Coarse Grid Correction

Consider the interplay between a coarse grid and a fine grid, where the
coarse grid has half as many node points as the fine grid. Let the following
equat ion be the discrete finite element representation of the given problem on

a fine grid.
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kfuf = §f (9)

£ . . ) . -
If V' is the approximation obtained on the fine grid after a few relaxation

sweeps, then the error ef‘= Uf,- Vf satisfies the following equation:
Kfef = rf (10)
f . . . ; . f f £ r
where r, the residual on the fine grid, is defined as r =F - K v

1f ef is a smooth function, ef can be approximated by a coarse grid
function ec which satisfies the following equation:

K€ = r® (11)
where r® = R (rf) =R (Ff -~ Kfvf)

Here R is the fine to coarse grid restriction operator. Since the coarse
grid has half as many grid points as the fine grid, it is more economical to
solve equation (11) than (10). After solving equation (11) approximately by
some method, the approximate error ec is used to accelerate convergence of the
fine grid solution using the following:

vE e v 4 pe®) (12)
Here P is the prolongation operator that interpolates from the coarse grid to
the fine grid and the arrow <« means that the left side is replaced by the
right side.

The process of calculating rc, solving for ec, and interpolating the
results to the fine grid is called the coarse grid correction. To solve
equation (9) efficiently, the above procedure is applied recursively using
multiple grids. This recursive procedure is described in the following
section.

Multigrid Cycle
Figure 3 shows the sequence of grid levels, K = 1 to M, for a simply

: k-1
supported beam where the element size bk satisfies the relation bk =2 h and
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h is the element size on the finest grid level (k =1). The equation on level
K 153 written as follows:
KUk = F° (13)

For k = 1 (the finest level), K1 = K and F? = F , respectively the given
stiffness matrix and right-hand side of the original problem. The basic
algorithm must determine the solution of the algebraic system in equation (13)
on the finest grid, k = 1. The fundamental idea is to use the solutions from
the progressively coarser grid levels to construct other finite element
sclutions in the form of equation (13). This précedure is called smoothing;
in practice, it is carried out by means of relaxation. A commonly used
technique is the Gauss-Seidel method.

Starting on the finest level, k = 1, let V1 be an approximation to U1 in
edquation (13), and define the residual on the finest level as r1 = F1 - K‘V1.
If e1 denotes the error U] - V1, the error and the residual are related
through the following equation:

K1e1 = r‘ (14)
For all subsequent levels (k > 1), the residual rk is the restriction of the
residual from the previous level k - 1 defined by the following equation:

k k-1
r

rK =R ( k—1ek—1

- K ) (15)

and, therefore, the equation to be solved is now the error equation:
KKe® = r¥ (16)

Given an approximate solution Vk to the equation (13), the multigrid
cycle for improving this approximation can be executed recursively as follows.

If k = 1, perform n, relaxation sweeps on equation (13), thereby

i

1 1 1 1.1
obtaining an approximate solution V . Calculate the residualr =F - KV,

12



Down—SweeE:

For 1 < k < M, repeat steps (1) and (2); for k = M, go to step (3), with

these steps defined as follows:

(M)

(2)

(3)

Up-Sweep:

On the current level k, start with an initial approximation

k

e = 0, and perform n, relaxation sweeps on equation (16),

K

1

obtaining a new approximation e

Restrict the residual to the next coarser level, k + 1, where
+

rk L. R(rk - Kkek), and set k = k + 1.

If k = M, solve equation (16) exactly, set k = M - 1, and startl

the up-sweep.

For M > k > 1, repeat steps (4) and (5); when k = 1, go to step (0),

where these steps are defined as follows:

(4)

(5)

(6)

K
Update the approximation to the error e on the current level
by adding the prolongated correction of the error from the

previous coarser level:

e M peth (17)

Perform n, relaxations on equation (16), starting with the

updated error ek from equation (17). This will result in an
improved approximation to ek. Set k = k - 1.

For k = 1, calculate an updated approximation to the solution

V1 « V1 + P(ez), and perform n, relaxations on equation (14),

2

1
obtaining an improved approximation to V .

The cycle described above in steps (1) through (6) is called a V-cycle,

indicated by the notation V(n1,n2), where n, indicates the number of

1

relaxation sweeps performed at each level on the first or downward leg of the

V-cycle and n

2

indicates the number of relaxation sweeps performed at cach



level on the second or upward leg of the cycle. Figure 4 shows a schematic
drawing of a V-cycle for six grid levels. A flowchart for one V-cycle is
shown in Figure 5.
Restriction and Prolongation Matrices
From the foregoing description of the correction scheme, it is apparent
that the keys to the multigrid procedure are the restriction and prolongation
operators. These operators are related to each other as explained below.
From equations (16), the residual relations on the coarse and fine grid
are written as follows:
K°e® = r Ke =r (18)
If ef is smooth, it can be represented on a coarser level. 1In that case,
the coarse and fine grid errors can be related using the prolongation operator
P in the following equation:
ef = pe’ (19)
and the residuals rf and rc can be related through the restriction operator R
as follows:
r® = el (20)
In equations (18), the errors, eC and ef, can be thought of as representing
the displacements of the respective grids, while the residuals, rc and rf, can
be thought of as the forces required to produce these displacements. Thus,
the strain energy of the coarse and fine grids can be expressed in terms of
the‘erroy equations by the foliowing expressions:

.l (e%)TrC fal (eH)Tef (21)

From equations (18), (19) and (20), the strain energies of the coarse and

fine grids may be rewritten as follows:

T4



=L @R
(22)

o= (eC)TPT rf

If the strain energy is to remain constant during intergrid transfers, “c
must equal wr. Thus, for arbitrary values of ec and rf, R must equal PT to
maintain an energy equivalence between grid levels.

Oné-Dimensional Beam Example

Before applying the multigrid cycle to the solution of the beam problem,
the restriction matrix R and the prolongation matrix P must be defined.
Restriction Matrix

The restriction matrix R is defined to transfer the loads and moments
from a fine grid to a coarse grid. To form this matrix, the consistent load
relations must be formulated for transferring the loads and the moments. With
equations (A2) and (A3), it is possible to determine the nodal forces in the
beam element equivalent to a concentrated force and moment applied at the
center of the element. The details of this formulation are given below.

Concentrated force. The nodal forces equivalent to a concentrated force

PO applied at the center of an element of length b are found by equating the
work done by the concentrated force to the work done by the unknown nodal
forces.
wP, the work done by the concentrated force, is equal to the force PO

times the displacement of that force:

WP = PO x w(x=b/2) (23)
The substitution of x = b/2 into equations (A2) and (A3) yields the following
result:

= 2 - 2l
Wy = Pox{w, /2 + 8, (b/8) + w,/2 - 8,(b/8)} (24)

15



Similarly, the work done by the nodal forces acting at the twd end nodes
can be written as follows:

Wn = R1w1 + R2w2 + M181 + M262 (25)

where R R., are the nodal forces and M M., are the nodal moments.

17 72 1 2
wP should equal wn for any arbitrary values of w1, w2, 61, and 62. Thus,
the consistent forces are
R1 = R2 = Po/a
M, =P b/8 M, = -M (26)

Concentrated moment. As before, the nodal forces equivalent to a

concentrated moment M0 applied at the center of the beam element are found by
equating the work done by the concentrated moment to the work done by the
unknown nodal forces.
wM, the work done by the concentrated moment, is equal to the product of
the moment MO and the rotation caused by that moment:
wM = MO x 8(x=b/2) (27)

To determine 6 in an element, equation (A2) must be differentiated with

respect to X%, yielding the following equation:

2 2

dw - bx 6x bx 3x
6 = —=wl-—=5+ ]+ 0 [1-—+ ]
dx 1 b2 b3 1 b b2

(28)
6x 6x2 2% 3x
Wl - — )t e - = oy =] 0 $sxsSb
2 b2 b3 2 b b2

Substituting x = b/2 into equation (28) and simplifying, the work due to the
concentrated moment M can be written as follows:
WM = MOXL('3/2b)w1 - 61/4 + (3/2b)w2 - 92/HJ (29)

16



As for the concentrated force, the work due to the nodal forces is

written as follows:

Wn = R1w1 + R2w2 + M161 + M282 (30)

where R1, R2 are the nodal forces and M1, M2 are the nodal moments.

0 and 6.,.

Again, wM should equal wn for any arbitrary values of Wis W 17 2

2!
Thus, the equivalent nodal forces for the case of the concentrated moment can

be expressed as follows:

R1 = - 3MO/(2b) R, = -R

M1 = - Mo/u M, = M {(31)

Consistent residual transfer. The consistent nodal forces and moments

given in equations (26) and (31) are used to determine the residual weights
fot use in the energy-conserving inter-grid transfer.

To form the restriction matrix using the force and moment weights,
consider two grid levels as shown in Figure 6. Here the fine grid has three
node points and two elements, while the coarse grid has two node points and
one element. The lengths of the elements in the fine and coarse grids are b/2
and b, respectively. The restriction matrix R is defined to restrict the
forces and moments from the fine grid to the coarse grid. The transfer of Lhe

forces and moments is shown in Figure 6 and defined below.

where

17



1 0 1/2 -3/(4b) 0 0

R = 0 1 b/Y -1/4 0 0 (32)
0 0 172 3/(4p) 1 0
0 0 -b/4 -1/4 0 1

This restriction matrix is valid only when the element size is doubled at each
coarser grid level.
Prolongation Matrix

The prolongation matrix defines the displacements on the fine grid given
the displacements on the coarse grid. To obtain this matrix, again consider
the two grid levels shown in Figure 6. Here the displacements w and & are
known on the coarse grid at nodes i' and k'. From these displacements, the
displacements at nodes i, j and k on the fine grid can be found in two ways.
In either method, the displacements at nodes i and k of the fine grid are the
same as the displacements of nodes i' and k' on the coarse grid. The
displacements at node j on the fine mesh are found in two ways. One method
assumes that the displacements at node J are the average of the displacements
at nodes i' and k' on the coarse mesh. This amounts to linear interpolation

as defined below:

W = pLwl ]
where
f T C T
wo={w 6y wJ ej Wi ek} woo= W el, W ek,}
-1 0 0 0 A
0 1 0 0
P = 1/2 0 1/2 0 ; (33)
0 1/2 0 1/2
0 0 1 0
L 0 0 0 1 -

18



in the other method, the element shape functions given in equations (A2)
and (A3) are used for the interpolation. The displacements at the center of
the element in the coarse . mesh are found by substituting x = b/2 into
equations (A2) and (A3). These are the displacements at node j on the fine

mesh. The prolongation matrix thus obtained is given below:

- 0 0 0 7
0 1 0 0
P = 172 b/4 172 -b/4 (34)
-3/(4b) 174 3/(4p) -1/4
0 0 1 0

-0 -0 0 -

The prolongation matrix obtained using the element shape functions is
exactly the transpose of the restriction matrix given in equation (32). Thus,
the use of this prolongation matrix maintains an energy equivalence between
grid levels. Again, this prolongation matrix is valid only when the element
size is doubled at each coarser grid level.

Although the restriction and prolongation operators derived here are for
a one-dimensional problem, the procedure used here can be applied to two- or
three-dimensional problems.

Storage and Work Requirements

The storage requirements necessary to solve the equation KU=F using
direct solution techniques are easily calculated from the total number of
degrees of freedom in the problem and the semi-bandwidth of ;he stiffness
matrix K. Since the multigrid method is being proposed as an alternate
sclution technique, the storage requirements of the multigrid method should

also be addressed.
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Obviously, the multigrid method requires more storage space than direct
solution techniques if all entries within the bandwidth are stored. The
original étiffness matrix must be stored as the finest grid level and
additional grid levels must be accommodated. 1If the finest grid has Ne
elements, the coarser levels have Ne/2, Ne/u, .++, etc., elements. Thus, the
tetal number of elements for M levels is

1

. M-ty - L
Ny + N/2 + N/ + N/8 + Loo + N /(27 7) = 2N (1 - —=5) < 2N, (35)

2

The total number of degrees of freedom is computed in a similar fashion. 1In
the present one-dimensional case, for Ne elements on the finest grid, there
are (Ne+1) nodes, each with 2 degrees of freedom. Hence, the total storage
required, assuming a constant semi-bandwidth B, can be found from the

following expression:

N N
2B(N_*1) + 28(59 1) + 2B(H9 +1) + ... = 2B(M +
1
2N_{1~ ;ﬁ}) < 2B(2N_+M) (36)

Thus, the maximum storage required is always less than 2B(2Ne+M).

This computation assumes the storage of all entries within the bandwidth,
which may result in the storage of several zero entries. These zero entries
must be stored in direct solution techniques since during the solution phase
some zero éntries may beéome nonzeroes. Examination of the Géusé;ééidel
iteration in equation (5) shows that only the nonzero terms of the matrices

nesd LG be stored.  However, storing only the nonzero entries requires the
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additional storage of pointer arrays for each row of the stiffness matrix.
Many finite-element stiffness matrices are sparsely populated and, in such
cases, the storage of only the nonzero terms, with the pointer arrays, can
considerably reduce the storage requirements compared with banded or profile
storage schemes.

With the definition of the coarser grids used here, the total storage
required by the stiffness matrices of all levels should be less than twice
that needed by the finest level. Additionally, the solution vectors for each
grid must be stored, as well as the load vectors, or right-hand sides.
Depending upon the structure of the problem, it may be advantageous to store
the restriction and prolongation matrices as well.

The work (number of floating point operations) done in a single V(n],nz)
cycle is equivalent to 2(n1+ n2) times the work of a single relaxation on the
finest grid level. This is determined as follows. In the V(n1,n2) cycle,
n.+ n, relaxations are done on the finest level while the total sum of the

1 2

relaxations done on the lower levels is always less than or equal to n‘+ n2.
Because each subsequently coarser grid level has half as many degrees of
freedom as the one before, the total number of degrees of freedom in all
levels is always less than twice the number in the finest grid (see equation
(36)). The work done iterating on each level is directly related to the
number of degrees of freedom that must be relaxed. Thus, the total work done

in a single V(n1,n2) cycle is less than the work of 2(n1+n2) relaxations on

the finest grid level.
RESULTS AND DISCUSSION

In this section the performance of the multigrid algorithm in solving the

simply supported beam problem of Figure 1 is evaluated. Six grid levels are
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used, where the finest mesh (level 1) has 32 elements modeling half the beam,

the next coarser grid (level 2) has 16 elements modeling half the beam, and so
on until the coarsest grid (level 6), which has one element modeling half the

beam.

The two prolongation operators mentioned earlier are considered: a
simple linear interpolation and a prolongation operator based on a constant
energy in each grid level.

Results are presented for a V(n1,n2) cycle. The convergence of the
solution and the work necessary to achieve convergence are presented.

Convergence of the solution was monitored with the L2—norm of the
residuals, defined in equation (8). While the displacements converge to the
exact solution within machine accuracy, the L2-norm, because of its
definition, converges with less accuracy than the displacements. Appendix C
further explains this behavior.

Results are given first for sequential ordering with linear prolongation,

for varying values of n, and Ny, and then with the energy-conserving

i

prolongation. Finally, the effects of red-black ordering are presented.
Sequential Ordering

Linear Prolongation

Figure 7 presents the L_-norm plotted against an increasing number of V-

2
cycles for both random (solid line) and zero (dashed line) initial approxima-
tions. These results are for a V(2,1) cycle where the coarsest level was
solved exactly. As seen in the figure, at the end of 20 V-cycles, the L2—norm

is on the order of 10“3

for the random initial approximation and on the order
of 10n6 for the zero initial approximation, indicating that the multigrid
soiub.ion is close to the direct solution obtainable on the finest grid level.

The rates of convergence (indicated by the slope of the curves) are almost
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identical for both the zero and random initial approximations. To test the
algorithm more severely, only the random initial approximation is used in the
remainder of this work. The work necessary to achieve the accuracy shown in
Figure 7 is 2(n1+ n2) times 20 V-cycles, or equivalent to the work of 120
relaxations on the finest grid level.
Varying n, and n,
To study the effect of varying the number of relaxations on either leg of
the V-cycle, two cases with linear prolongation were considered. In the first
case, the number of relaxations on the downward leg of the cycle was held

constant at n, = 1, while the number of relaxations on the upward leg of the

cycle was increased from 1 to 5 (n2 =1 to 5). Figure 8 shows the L,-norm as
a function of increasing n2. As expected, the rate of convergence improves
with increasing n2. For the V(1,5) cycle, the Lz-norm is on the order of 10_7
after about 18 V-cycles. The work of 18 V(1,5) cycles is equivalent to that
of 216 relaxations on the finest grid level.

The second case, n, = 1 while n,& was increased from 1 to 5, is shown in
Figure 9. As in the previous case, the rate of convergence improved with
increasing numbers of relaxations. For the V(5,1) cycle, the Lz—norm is on
the order of 10—6 after about 18 V-cycles, compared to 10_7 for the V(1,5)
cycle of the previous case. As before, the work of 18 V(1,5) cycles is
equivalent to that of 216 relaxations on the finest grid level. A comparison
of Figures 8 and 9 shows that the V(1,n) cycle yields better convergence than
the V(n,1) cycle when n is greater than 2. This can be explained in the
following manner.

A prolongation from level k to k-1 introduces high frequency errors at

level k-1, This is illustrated schematically in Figure 10 for linear

interpolation. Level k represents a coarse mesh with 2 elements, AC and CE.
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Level k-1 represents a fine mesh with 4 elements, AB, BC, CD, and DE. Using a
linear prolongatlon, the displacements on level k-1 at B and D are found as

w. = (w = {(w

B + wC)/Z and w

+ wE)/2 with similar expressions for the

A D c

rotations at B and D. The errors in the displacements at B and D are larger
than at C and E, as shown in the Figure 10(b). The total error can be
represented as a low frequency (smooth) error plus high frequency
(oscillatory) errors. These high frequency errors can be easily eliminated on
level k-1 with a few relaxations. The V(1,n) cycle does pfecisely this, and
hence the better convergence compared with the V(n,1) cycle.
Energy-Conserving Prolongation

Figure 11 shows the variation of the Lz—norm as a function of the number
of V-cycles for the V(1,n1) cycle with n, = 1, 2, vvo, 5 and P = RT (energy-
conserving prolongation). The larger the value of Nq the faster the solution
converges. For n1 equal to 3, Y4 or 5, the multigrid results converge to the
exact solution within the accuracy of the machine in approximately 8 V-cycles
with a work equivalent to about 96, 80 or 64 relaxations on the finest grid.
For n1 equal to 1 and 2, sﬁightiy more V-cycles were required for convergence
for a work expenditure equivalent to 48 and 60 iterations, respectively, on

the finest grid. Thus, although for n, equal to 1 or 2, more V-cycles are

1
required for convergence, less work is needed than when n1 is equal to 3, 4 or
5.

The energy-conserving prolongation (P = RT) was also used with the V(n,1)
cycle. Two cases are compared in Figure 12. The results for the V(n,1) cycle
are virtually identical to those for the V(1,n) cycle. This is expected since

the cnergy-conserving prolongation introduces little or no high frequency

errors from the coarse level to the fine level.
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Figure 13 compares the exact solution to the multigrid solution for
energy-conserving prolongation with the V(2,1) cycle. Figure 13 shows e, and

ee, the errors in w and 6, respectively, where ew and ee are calculated as

wix) - w(X)exact o(x) - e(X)exact

W w 0 0
max max

Here wmax and emax are the maximum values of the exact solution. Figure 13

shows ew and e, at the end of the first, third, fifth, and seventh V-cycles.

0
After each V-cycle, the maximum error drops significantly, and after the
seventh cycle, the multigrid solution has converged to the exact solution
(within machine accuracy).
Red-Black Ordering

To study the performance of the red-black ordering scheme in the V(nl,nz)
multigrid cycle, all the even-numbered nodes were designated as red and all
the odd-numbered nodes were designated black. At each grid level, all the red
nodes were relaxed first, followed by the black nodes, in a V(1,1) cycle. For
both the linear and energy-conserving prolongations, the solution converged
Wwithin machine accuracy in a single V-cycle. Thus, with the red-black
ordering, convergence is obtained with a work equivalent to only 4 relaxations
on the fine grid. The excellent performance of the red-black ordering scheme
for this one-dimensional problem is expected and can be explained by a cyclic
reduction method.

In the cyclic reduction method, the displacement and rotation at node i
(red node) can be expressed in terms of the displacements and rotations at
nodes i-1 and i+1 (black nodes), and the node 1 displacement and rotation can

be eliminated from the system. This can be done for all the red nodes, thus
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producing a much smaller set of equations. The same procedure can be employed
repeatedly until only one or two nodes remain. The solution for the original
system 1s then found by reversing the process. This type of process, which
can be applied only to one-dimensional problems, always produces an exact
solution in one cycle. For this problem, the current process with red-black
ordering is exactly equivalent to this cyclic reduction scheme, and thus

converges 1ln one cycle.

CONCLUDING REMARKS

Multigrid procedures were developed for use in one-dimensional finite
element analysis. Several aspects of the multigrid procedure were studied and
explained in detail.

The key elements of the multigrid method are the restriction and the
prolongation operators. These operators were derived based on energy
principles. A general procedure for obtaining the restriction matrix was
outlined. This procedure considered the residuals from the iterative sqlution
as the loads on the fine grid and transferred these loads, in an energy-
conserving manner, onto the coarse grid. The procedure outlined here can be
used with any multigrid finite element procedure.

Various aspects of the V-cycle multigrid algorithm were studied in the
analysis of the deflections of a one-dimensicnal, simply supported Bernoulli-
Euler beam. From this study, for six grid levels with 32 elements in the
finest grid, the following conclusions were drawn.

1. With linear prolongation and sequential ordering, the multigrid

algorithm yielded results which were of machine accuracy with work
equivalent to about 200 standard Gauss-Seidel relaxations on the

finest grid.



With linear prolongation and sequential ordering, the V{(1,n) cycle
with n greater than 2 yielded better convergence rates than the
V(n,1) cycle.

Maintaining an energy balance during the inter-grid transfers
required that the prolongétion operator be the transpose of the
restriction operator.

The multigrid algorithm showed improved convergence rates when energy
was conserved In the inter-grid transfers. With the energy-
conserving prolongation and sequential ordering, the multigrid
algorithm yielded results which were of machine accuracy with a work
equivalent to about 50 standard Gauss-Seidel relaxations on the
finest grid.

The red-black ordering of the relaxation with either the linear or
energy-conserving prolongation yielded solutions with machine
accuracy in a single V(1,1) cycle. This is equivalent to performing

about U4 relaxations on the finest grid level.
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APPENDIX A - BEAM ELEMENT SHAPE FUNCTIONS

For an element with two nodes (four unknowns), the deflected shape w can

be assumed to be given by a cubic function, i.e.,

3

W=a * a.X +ta x2 + ay,X 0O $xshb (A1)

i 2 3

Equation (A1) can be written in terms of shape functions N, (i =1 to )

corresponding to wj and ej (j = 1,2) as follows:

wix) = wo N+ e N, oWy Ny + 8, Ny (A2)
where

3x2 2x3 2x2 x3
N1 =1 - 5 + 3 N2 = X - 5 + —

b b b

0O £xsb (A3)
R T oL e
3 b2 b3 y b b

Here b is the element length.
The element stiffness matrix, obtained from these shape functions, is

given in the text {(equation (4)).

30



APPENDIX B - CONVERGENCE OF THE GAUSS-SEIDEL METHOD

The Gauss-Seidel iterations efficiently remove the high frequency errors
but not the low frequency errors. This appendix demonstrates the efficiency
of Gauss-Seidel iterations in removing the high frequency errors and discusses
the convergence of the Gauss-Seidel method.

Figures B1 and B2 show the efficiency of the Gauss-Seidel method in
removing the high frequency errors. A random initial‘approximation was used
for these figures. The displacement w at each node, normalized by the exact

displacement at the center of the beam, is shown at the end of the 1St, 10th,

50 " 1000 h

, 10000*", and 20000*" iteration in Figure Bl. Similar
information for the rotation 6 at each node is given in Figure B2. For both
the displacement w and the rotation 6, the majority of the high frequency
errors have been smoothed out by the 10th iteration. The remaining smooth
errors are not handled efficiently by the Gauss-Seidel method.

Figures B3 and BY4 present the iterative solutions for the displacements
and rotations for a zero initial approximation. The displacement w at each
node, normalized by the exact displacement at the center of the beam, is shown
at the end of the 500th, 1000th, SOOOth, 1000Oth, 20000th, and 30000th
iteration in Figure B3. Similar information for the rotation 6 at each node
is given in Figure B4. Here again the Gauss-Seidel method performs very
inefficiently.

In fact, the performance of the Gauss-Seidel method is so poor for this
example that even after 30000 iterations, the iterative solutions are still
grossly in error. Figures B5 and B6 compare the exact solution to the

iterative solution for two different initial approximations. Figure B5 shows

W, the displacements, and Figure B6 shows 8, the rotations after 30000
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iterations. 1In both figures, the solid line represents the exact solution
while the dashed and dash-dot line represent the zero and random initial
approximations, respectively. Even after 30000 iterations, the magnitudes of
both iterative solutions are grossly in error and, obviously, the nature of
the initial approximation still has a large effect on the iterative solution.

The very slow convergence in this problem is also due, in part, to the
nature of the stiffness matrix for the beam example. The Gauss-Seidel
iterative method works best for diagonally dominant matrices. However, as
seen in equation (3), the beam stiffness matrix contains off-diagonals terms
of the same or higher order than the diagonals terms. Hence, the poor

performance of the Gauss-Seidel in this example is not unexpected.
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APPENDIX C - ERROR ANALYSIS

This appendix examines the relationship between the error in the
displacements and the errdr in the L2—norm of the residuals. As stated
previously, although the displacements appeared to have converged to the
direct solution within machine accuracy (10-1u), the L2—norm of the residuals
was on the order of 10—9. Figure C1 shows the errors in w and 6b, normalized
by the maximum displacement, where the error in the displacement is computed
as the difference between the iterative solution disblacement and the direct
solution displacement. Figure C2 presents the normalized force and moment
residuals along the length of the beam. As seen in Figure Ci1, the

displacement errors are smooth and on the order of 10_9, and while the

residuals (Figure C2) are also on the order of 10—9, they are oscillatory.

Consider the equation for the ith residual:

(c1)

"3

]

]

|
e~ 2

x

<

, 13

where v, 1s the current approximate solution. The term v, can be expressed as

J J

follows:
v, =d,- e, (c2)
J J A
where d, is the direct displacement solution at node j and ej represents the

J.

error at node j.

N
Since by definition f‘1 ‘J§1 kijdj’ equation (C1) can be rewritten as
follows:
N
r. = ) Kk,.e, (c3)
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or,
N N '

r, = )L k..e. s ) k.. llesl (c4)
= =1 iJ J

If all the errors ej (3 =1,2, ..., N) are on the order of e, the

accuracy of the machine, then the following is true:

. (c5)
i m j=1 ij
To keep the dimensions the same, in the current problem of a one-
dimensional beam, the error in w is denoted by ey while the error in 6 is
denoted by bee. Equation (C5) then reduces to the following:
EI . .
r Se —=[12 +6 + 24 + 12 + 6]
W, m 3
i b
(C6)

r /bse ELi6+2+8+6+ 2]
ei m b3

So that the residuals of the forces and moments will have the same dimensions,

the moment residuals have been divided by b, the element length.

Equations (C6) can be written in a nondimensional form as follows:

= 3
rwi/(qob) s e 8(L/b)

(cm

rg /(qgbL) s e 24(L/b)>
i
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where e = e /d and d 1s the maximum displacement from the direct
m max max :
solution of the stiffness equations.
-14
Thus if e is on the order of the machine accuracy (em =10 1 ), then the
nondimensional residuals for the w and 9 degrees of freedom for a beam with 32

8 and 0.786x10_8, respectively. When the

elements can be at most 1.96x10
residuals are smaller than these maximums, as in Figure C2, the solution
displacements have converged within machine accuracy, and no further

improvements can be expected.
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Figure 1. Simply supported beam under distributed loading.
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n, = number of relaxations
performed on down-sweep

n, = number of relaxations
performed on up-sweep

Fine—-to—-coarse
transfer

-l

Coarse-to-fine
transfer

Figure 4. V-cycles for six levels, V(“1'“2)'
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Ry = R; +Rj/2 - 3M;/(4b) Ry:= Ry + Rj/2 + M;/(4b)
M; = M; +R;b/4 - Mj/4 My, = My - Rjb/4 - M;/4

Figure 6. Consistent transfer of force and moment residuals.
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Figure 10. High frequency errors due to linear prolongation.
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operator be the transpose of the restriction operator, and led to improved con-
vergence rates. With energy-conserving prolongation and sequential ordering, the
multigrid algorithm yielded results of machine accuracy with a work equivalent to 4%
Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations
yielded solutions of machine accuracy in a single V(1,1) cycle, which required work
equivalent to about 4 iterations on the finest grid level.
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